We demonstrate efficient subthermal cooling of the modified cyclotron mode of a single trapped antiproton and reach particle temperatures T_{+}=E_{+}/k_{B} below 200 mK in preparation times shorter than 500 s. This corresponds to the fastest resistive single-particle cyclotron cooling to subthermal temperatures ever demonstrated. By cooling trapped particles to such low energies, we demonstrate the detection of antiproton spin transitions with an error rate <0.
View Article and Find Full Text PDFWe demonstrate a new temperature record for image-current mediated sympathetic cooling of a single proton in a cryogenic Penning trap by laser-cooled ^{9}Be^{+}. An axial mode temperature of 170 mK is reached, which is a 15-fold improvement compared to the previous best value. Our cooling technique is applicable to any charged particle, so that the measurements presented here constitute a milestone toward the next generation of high-precision Penning-trap measurements with exotic particles.
View Article and Find Full Text PDFWe present a fluorescence-detection system for laser-cooled 9Be+ ions based on silicon photomultipliers (SiPMs) operated at 4 K and integrated into our cryogenic 1.9 T multi-Penning-trap system. Our approach enables fluorescence detection in a hermetically sealed cryogenic Penning-trap chamber with limited optical access, where state-of-the-art detection using a telescope and photomultipliers at room temperature would be extremely difficult.
View Article and Find Full Text PDF