Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan.
View Article and Find Full Text PDFEmerging and re-emerging vector-borne diseases such as chikungunya and dengue and associated Aedes vectors are expanding their historical ranges; thus, there is a need for the development of novel insecticides for use in vector control programs. The mosquito toxicity of a novel insecticide and repellent consisting of medium-chain carbon fatty acids (C8910) was examined. Determination of LC and LC was made against colony-reared Aedes aegypti (L.
View Article and Find Full Text PDFBackground: Guidelines from the World Health Organization for monitoring insecticide resistance in disease vectors recommend exposing insects to a predetermined discriminating dose of insecticide and recording the percentage mortality in the population. This standardized methodology has been widely adopted for malaria vectors and has provided valuable data on the spread and prevalence of resistance. However, understanding the potential impact of this resistance on malaria control requires a more quantitative measure of the strength or intensity of this resistance.
View Article and Find Full Text PDFBackground: Resistance to multiple classes of insecticides has been detected in the malaria vector Anopheles albimanus in northwest Peru. Acetylcholinesterase (AChE) insensitivity has previously been associated with resistance to organophosphate (OP) and carbamate (CA) insecticides in arthropods. A single point mutation on the ace-1 gene (G119S) associated with resistance to OPs and CAs has been described previously in four anopheline species, but not in field-collected An.
View Article and Find Full Text PDFObjective: To examine the effects of increasing larval rearing temperatures on the resistance status of Trinidadian populations of Aedes aegypti to organophosphate (OP) insecticides.
Methods: In 2007-2008, bioassays and biochemical assays were conducted on A. aegypti larvae collected in 2006 from eight geographically distinct areas in Trinidad (Trinidad and Tobago).