Publications by authors named "W Fujii"

Many patients with diabetes use self-measurement devices for blood glucose to understand their blood glucose levels. Most of these devices utilize FAD-dependent glucose dehydrogenase (FAD-GDH) to determine blood glucose levels. For this purpose, FAD-GDHs specifically oxidizing glucose among the sugars present in blood is required.

View Article and Find Full Text PDF
Article Synopsis
  • - Curdlan, a β-glucan, inhibits the formation of osteoclasts—cells that break down bone—by binding to dectin-1, leading to reduced expression of NFATc1, a key factor for osteoclast differentiation.
  • - The study investigates how curdlan disrupts RANKL-induced NFATc1 expression and finds that it also affects the NF-κB signaling pathway, which is crucial for NFATc1 activation.
  • - Additionally, the research indicates a dectin-1-independent mechanism involving complement receptor 3 (CR3), suggesting that curdlan's effects on osteoclast differentiation are multifaceted and involve multiple pathways.
View Article and Find Full Text PDF

Interstitial lung disease (ILD) is a serious complication of connective tissue diseases (CTDs). The heterogeneity of ILDs reflects differences in pathogenesis among diseases. This study aimed to clarify the characteristics of CTD-ILDs via a detailed analysis of the bronchoalveolar lavage fluid (BALF) and blood immune cells.

View Article and Find Full Text PDF

is the most pathogenic periodontal bacterium in the world. Recently, has been considered responsible for dysbiosis during the development of periodontitis. This study aimed to evaluate a novel immunochromatographic device using monoclonal antibodies against in subgingival plaques.

View Article and Find Full Text PDF

Background: Chronic pancreatitis (CP) is a progressive disease characterized by pancreatic fibrosis for which effective treatment options are lacking. Mesenchymal stem cells (MSCs) have shown potential for fibrosis treatment but face limitations in clinical application. The high-mobility group box 1 (HMGB1) fragment mobilizes MSCs from bone marrow into the blood and has emerged as a promising therapeutic agent for tissue regeneration in various pathological conditions.

View Article and Find Full Text PDF