For calculated initial antifungal therapy, knowledge on parallel and cross-resistances are vitally important particularly in the case of multiresistant isolates. Based on a strain collection of 1,062 yeast isolates from a German/Austrian multicentre study, susceptibility pattern analysis (SPA) was used to determine the proportion of parallel and cross-resistances to eight antifungal agents (AFAs) encompassing flucytosine, amphotericin B, azoles (fluconazole, voriconazole and posaconazole) and echinocandins (caspofungin, micafungin and anidulafungin). A total of 414 (39.
View Article and Find Full Text PDF4,860 clinical yeast isolates (25 genera, 47 species) were tested in parallel to fluconazole, itraconazole, ketoconazole, and voriconazole. After re-evaluation of all species according to their current valid taxonomic denominations, the range of the top four of the dermatology, gynaecology and paediatrics associated species from superficial infections was similar to those isolated from other wards with mainly systemic/invasive infections. Candida albicans (44.
View Article and Find Full Text PDFFrom 1997 to 2009, 1,862 dermatology, gynaecology, and paediatrics (DGP) associated clinical yeast isolates were analysed for species occurrence, specimen origin and type, (multi-) resistance pattern, and testing period. The top seven of the isolated DGP-associated species remained the same as compared to total medical wards, with Candida albicans (45%) as most frequent pathogen. However, the DGP wards and DGP ICUs showed species-specific profiles; that is, the species distribution is clinic-specific similar and however differs in their percentage from ward to ward.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2014
The objective of this study was 2-fold: to evaluate whether phylogenetically closely related yeasts share common antifungal susceptibility profiles (ASPs) and whether these ASPs can be predicted from phylogeny. To address this question, 9,627 yeast strains were collected and tested for their antifungal susceptibility. Isolates were reidentified by considering recent changes in taxonomy and nomenclature.
View Article and Find Full Text PDFStaphylococcus aureus and Candida species are increasingly coisolated from implant-associated polymicrobial infections creating an incremental health care problem. Synergistic effects between both genera seem to facilitate the formation of mixed S. aureus-Candida biofilms, which is thought to play a critical role in coinfections with these microorganisms.
View Article and Find Full Text PDF