Publications by authors named "W Fecke"

The success of preclinical drug discovery strongly relies on the ability of experimental models to resemble human pathophysiology. The number of compounds receiving approval for clinical use is limited, and this has led to the development of more physiologically relevant cellular models aimed at making preclinical results more prone to be successfully translated into clinical use. In this review, we summarize the technologies available in the field of high-throughput screening (HTS) using complex cellular models, and describe collaborative initiatives, such as EU-OPENSCREEN, which can efficiently support researchers to easily access state-of-the-art chemical biology platforms for improving the drug discovery process.

View Article and Find Full Text PDF
Article Synopsis
  • The EU-OPENSCREEN initiative was established to enhance the discovery of new molecular research tools and drug candidates by combining the expertise and resources of 20 European partners in chemical biology.* -
  • Recent projects demonstrated successful outcomes, including promising compounds for antimalarial drugs, apoptosis-inducing peptides for specific cancer types, small-molecule ROCK inhibitors for regenerative applications, and novel treatments for metabolic disorders and acute myeloid leukemia.* -
  • These findings emphasize the advantages of small-molecule screening and the collaboration between medicinal chemistry and various assay designs facilitated by EU-OPENSCREEN.*
View Article and Find Full Text PDF

The CXC chemokine receptor 4 (CXCR4) is a widely expressed G protein-coupled receptor implicated in several diseases. In cancer, an increased number of surface CXCR4 receptors, in parallel with aberrant signaling, have been reported to influence several aspects of malignancy progression. CXCR4 activation by the specific ligand C-X-C motif chemokine 12 (CXCL12) induces several intracellular signaling pathways that have been selectively related to malignancy depending on the tissue or cell type.

View Article and Find Full Text PDF

Huntington's Disease is a rare neurodegenerative disease caused by an abnormal expansion of CAG repeats encoding polyglutamine in the first exon of the huntingtin gene. N-terminal fragments containing polyglutamine (polyQ) sequences aggregate and can bind to cellular proteins, resulting in several pathophysiological consequences for affected neurons such as changes in gene transcription. One transcriptional pathway that has been implicated in HD pathogenesis is the CREB binding protein (CBP)/cAMP responsive element binding (CREB) pathway.

View Article and Find Full Text PDF

The TWEAK-Fn14 pathway is upregulated in models of inflammation, autoimmune diseases, and cancer. Both TWEAK and Fn14 show increased expression also in the CNS in response to different stimuli, particularly astrocytes, microglia, and neurons, leading to activation of NF-κB and release of proinflammatory cytokines. Although neutralizing antibodies against these proteins have been shown to have therapeutic efficacy in animal models of inflammation, no small-molecule therapeutics are yet available.

View Article and Find Full Text PDF