The development of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. We screened the circulating B cell repertoires of COVID-19 survivors and vaccinees to isolate over 9,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific monoclonal antibodies (mAbs), providing an expansive view of the SARS-CoV-2-specific Ab repertoire. Among the recovered antibodies was TXG-0078, an N-terminal domain (NTD)-specific neutralizing mAb that recognizes diverse alpha- and beta-coronaviruses.
View Article and Find Full Text PDFDevelopment of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. Current strategies for developing pan-coronavirus countermeasures have largely focused on the receptor binding domain () and S2 regions of the coronavirus Spike protein; it has been unclear whether the N-terminal domain () is a viable target for universal vaccines and broadly neutralizing antibodies (). Additionally, many RBD-targeting Abs have proven susceptible to viral escape.
View Article and Find Full Text PDFThe vertebrate adaptive immune system modifies the genome of individual B cells to encode antibodies that bind particular antigens. In most mammals, antibodies are composed of heavy and light chains that are generated sequentially by recombination of V, D (for heavy chains), J and C gene segments. Each chain contains three complementarity-determining regions (CDR1-CDR3), which contribute to antigen specificity.
View Article and Find Full Text PDFBackground: Lower CD4 cell count in people with HIV infection (PWH) is associated with increased cardiovascular disease (CVD) risk. Whether subsets of CD4 T helper cells are linked with CVD is unclear.
Objectives: The aim of this study was to explore the association between peripherally circulating CD4 T cell subsets and incident CVD.
Loss of T cell immunogenicity due to mutations in virally encoded epitopes is a well-described adaptation strategy to limit host anti-viral immunity. Another described, but less understood, adaptation strategy involves the selection of mutations within epitopes that retain immune recognition, suggesting a benefit for the virus despite continued immune pressure (termed non-classical adaptation). To understand this adaptation strategy, we utilized a single cell transcriptomic approach to identify features of the HIV-specific CD8 T cell responses targeting non-adapted (NAE) and adapted (AE) forms of epitopes containing a non-classical adaptation.
View Article and Find Full Text PDF