Publications by authors named "W F Kindel"

The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam.

View Article and Find Full Text PDF

We demonstrate an optical waveguide device, capable of supporting the high, in-vacuum, optical power necessary for trapping a single atom or a cold atom ensemble with evanescent fields. Our photonic integrated platform, with suspended membrane waveguides, successfully manages optical powers of 6 mW (500 μm span) to nearly 30 mW (125 μm span) over an un-tethered waveguide span. This platform is compatible with laser cooling and magneto-optical traps (MOTs) in the vicinity of the suspended waveguide, called the membrane MOT and the needle MOT, a key ingredient for efficient trap loading.

View Article and Find Full Text PDF

Primary visual cortex (V1) is the first stage of cortical image processing, and major effort in systems neuroscience is devoted to understanding how it encodes information about visual stimuli. Within V1, many neurons respond selectively to edges of a given preferred orientation: These are known as either simple or complex cells. Other neurons respond to localized center-surround image features.

View Article and Find Full Text PDF

We report on the first results from a new microwave cavity search for dark matter axions with masses above 20  μeV. We exclude axion models with two-photon coupling g_{aγγ}≳2×10^{-14}  GeV^{-1} over the range 23.55 View Article and Find Full Text PDF

We present measurements of a topological property, the Chern number (C_{1}), of a closed manifold in the space of two-level system Hamiltonians, where the two-level system is formed from a superconducting qubit. We manipulate the parameters of the Hamiltonian of the superconducting qubit along paths in the manifold and extract C_{1} from the nonadiabatic response of the qubit. By adjusting the manifold such that a degeneracy in the Hamiltonian passes from inside to outside the manifold, we observe a topological transition C_{1}=1→0.

View Article and Find Full Text PDF