Background: Probiotic administration may decrease the incidence of necrotizing enterocolitis (NEC) through mechanisms that are largely unknown. We investigated the effects of probiotics on intestinal epigenetics and assessed their effects on intestinal inflammation and motility using both ileum-predominant and combined ileo-colitis mouse NEC models.
Methods: C57BL/6 J mice were gavage-fed a multi-strain probiotic from postnatal days 3-11, consisting of B.
Background: During the COVID-19 pandemic, novel nanoparticle-based mRNA vaccines were developed. A small number of individuals developed allergic reactions to these vaccines although the mechanisms remain undefined.
Methods: To understand COVID-19 vaccine-mediated allergic reactions, we enrolled 19 participants who developed allergic events within 2 h of vaccination and 13 controls, nonreactors.
Background & Aims: The abdominal discomfort experienced by patients with colitis may be attributable in part to the presence of small intestinal dysmotility, yet mechanisms linking colonic inflammation with small-bowel motility remain largely unexplored. We hypothesize that colitis results in small intestinal hypomotility owing to a loss of enteroendocrine cells (EECs) within the small intestine that can be rescued using serotonergic-modulating agents.
Methods: Male C57BL/6J mice, as well as mice that overexpress (EEC) or lack (EEC) NeuroD1+ enteroendocrine cells, were exposed to dextran sulfate sodium (DSS) colitis (2.
Background: Traumatic brain injury (TBI) leads to acute gastrointestinal dysfunction and mucosal damage, resulting in feeding intolerance. C-C motif chemokine receptor 2 (Ccr2 + ) monocytes are crucial immune cells that regulate the gut's inflammatory response via the brain-gut axis. Using Ccr2 ko mice, we investigated the intricate interplay between these cells to better elucidate the role of systemic inflammation after TBI.
View Article and Find Full Text PDF