We show that ionic conduction properties of a multipore nanofluidic memristor can be controlled not only by the amplitude and frequency of an external driving signal but also by chemical gating based on the electrolyte concentration, presence of divalent and trivalent cations, and multi-ionic systems in single and mixed electrolytes. In addition, we describe the modulation of current rectification and hysteresis phenomena, together with neuromorphic conductance responses to voltage pulses, in symmetric and asymmetric external solutions. In our case, memristor conical pores act as nanofluidic diodes modulated by ionic solution characteristics due to the surface charge-regulated ionic transport.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2024
Electrochemical impedance spectroscopy (EIS) constitutes a useful tool in membrane science and technology because it provides valuable structural and functional information. The different arcs observed in the impedance spectra permit to decouple and understand distinct physico-chemical phenomena occurring under operating conditions. By using EIS techniques, we have characterized here multipore asymmetric membranes with conical pores that exhibit a broad range of ionic conduction properties, including current rectification.
View Article and Find Full Text PDFWe study the cation transport against an external concentration gradient (cation pumping) that occurs in conical nanopores when zero-average oscillatory and white noise potentials are externally applied. This pumping, based on the electrically asymmetric nanostructure, is characterized here by a load capacitor arrangement. In the case of white noise signals, the conical nanopore acts as an electrical valve that allows extraction of order from chaos.
View Article and Find Full Text PDFWith the current global projection of over 130 million electric vehicles (EVs), there soon will be a need for battery waste management. Especially for all-solid-state lithium-ion batteries (lithium ASSBs), aspects of waste management and circular economy have not been addressed so far. Within such ASSBs, the use of solid-electrolytes like garnet-type Li La Zr Ta O (LLZTO) may shift focus on strategies to recover not only the transition metal elements but also elements like La/Zr/Ta.
View Article and Find Full Text PDFWe have studied experimentally the electrical conductance-voltage curves of negatively and positively charged conical nanopores bathed in ionic solutions with monovalent, divalent, and trivalent cations at electrochemically and biologically relevant ionic concentrations. To better understand the interaction between the pore surface charge and the mobile ions, both single salts and salt mixtures have been considered. We have paid attention to the effects on the conductance of the cation valency, the pore charge asymmetry, and the pore charge inversion phenomena due to trivalent ions, both in single salts and salt mixtures.
View Article and Find Full Text PDF