Background: Previous neuroimaging studies have demonstrated exaggerated amygdala responses to negative stimuli in posttraumatic stress disorder (PTSD). The time course of this amygdala response is largely unstudied and is relevant to questions of habituation and sensitization in PTSD exposure therapy.
Methods: We applied blood oxygen level dependent functional magnetic resonance imaging and statistical parametric mapping to study amygdala responses to trauma-related and nontrauma-related emotional words in sexual/physical abuse PTSD and normal control subjects.
Cortical field boundaries of sensory areas can be physiologically defined. The delineation of the human auditory cortical architecture remains incomplete. Here we used systematic variation of pitch and duration of sinusoidal tones to define auditory cortical fields along Heschl's gyrus with a silent, event-related fMRI scanning technique that allowed us to determine spatially small shifts of neuronal responses.
View Article and Find Full Text PDFThe feasibility of mapping transient, randomly occurring neuropsychological events using independent component analysis (ICA) was evaluated in an auditory sentence-monitoring fMRI experiment, in which prerecorded short sentences of random content were presented in varying temporal patterns. The efficacy of ICA on fMRI data with such temporal characteristics was assessed by a series of simulation studies, as well as by human activation studies. The effects of contrast-to-noise ratio level, spatially varied hemodynamic response within a brain region, time lags of the responses among brain regions, and different simulated activation locations on the ICA were investigated in the simulations.
View Article and Find Full Text PDFTransit time and trailing time in pulsed spin-labeling perfusion imaging are likely to be modulated by local blood flow changes, such as those accompanying brain activation. The majority of transit/trailing time is due to the passage of the tagged blood bolus through the arteriole/capillary regions, because of lower blood flow velocity in these regions. Changes of transit/trailing time during activation could affect the quantification of CBF in functional neuroimaging studies, and are therefore important to characterize.
View Article and Find Full Text PDFA perfusion-based event-related functional MRI method for the study of brain activation is presented. In this method, cerebral blood flow (CBF) was measured using a recently developed multislice arterial spin-labeling (ASL) perfusion imaging method with rapid spiral scanning. Temporal resolution of the perfusion measurement was substantially improved by employing intertrial subtraction and stimulus-shifting schemes.
View Article and Find Full Text PDF