Multispecies studies are known for tackling human exceptionalism. Whilst the field has seen a remarkable increase in popularity amongst scholars in the humanities and social sciences, critiques argue that it neglects inequalities and consequential differences amongst humans and between humans and other-than-humans. These critiques are especially relevant in the context of Southern Africa, where extreme inequalities amongst humans persist whilst wildlife is often perceived to enjoy a favoured position in the region's prominent conservation industries.
View Article and Find Full Text PDFMolecular self-assembly with DNA origami offers an attractive route to fabricate arbitrary three-dimensional nanostructures. In DNA origami, B-form double-helical DNA domains (dsDNA) are commonly linked with covalent phosphodiester strand crossovers to build up three-dimensional objects. To expand the palette of structural motifs in DNA origami, here we describe hybrid duplex-triplex DNA motifs as pH-dependent building blocks in DNA origami.
View Article and Find Full Text PDFTo impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry.
View Article and Find Full Text PDFSynthetic nanoscale devices that reconfigure dynamically in response to physiological stimuli could offer new avenues for diagnostics and therapy. Here, we report a strategy for controlling the state of DNA nanodevices based on sensing antigens with IgG antibodies. To this end, we use IgG antibodies as structural elements to kinetically trap reconfigurable DNA origami structures in metastable states.
View Article and Find Full Text PDFBroad-spectrum antiviral platforms that can decrease or inhibit viral infection would alleviate many threats to global public health. Nonetheless, effective technologies of this kind are still not available. Here, we describe a programmable icosahedral canvas for the self-assembly of icosahedral shells that have viral trapping and antiviral properties.
View Article and Find Full Text PDF