Publications by authors named "W Ed Hammond"

Article Synopsis
  • * It compares the drought responses of two plant species: sweet corn, which disconnects from soil during severe drought, and peanut, which maintains its connection.
  • * Findings indicate that while hyperspectral reflectance can predict soil water status for peanuts, it fails for sweet corn once disconnection occurs, highlighting the need for species-specific approaches in predicting soil water status.
View Article and Find Full Text PDF

Turgor loss point (TLP) is an important proxy for plant drought tolerance, species habitat suitability, and drought-induced plant mortality risk. Thus, TLP serves as a critical tool for evaluating climate change impacts on plants, making it imperative to develop high-throughput and in situ methods to measure TLP. We developed hyperspectral pressure-volume curves (PV curves) to estimate TLP using leaf spectral reflectance.

View Article and Find Full Text PDF

Vegetation greening has been suggested to be a dominant trend over recent decades, but severe pulses of tree mortality in forests after droughts and heatwaves have also been extensively reported. These observations raise the question of to what extent the observed severe pulses of tree mortality induced by climate could affect overall vegetation greenness across spatial grains and temporal extents. To address this issue, here we analyse three satellite-based datasets of detrended growing-season normalized difference vegetation index (NDVI) with spatial resolutions ranging from 30 m to 8 km for 1,303 field-documented sites experiencing severe drought- or heat-induced tree-mortality events around the globe.

View Article and Find Full Text PDF

Despite the abundant evidence of impairments to plant performance and survival under hotter-drought conditions, little is known about the vulnerability of reproductive organs to climate extremes. Here, by conducting a comparative analysis between flowers and leaves, we investigated how variations in key morphophysiological traits related to carbon and water economics can explain the differential vulnerabilities to heat and drought among these functionally diverse organs. Due to their lower construction costs, despite having a higher water storage capacity, flowers were more prone to turgor loss (higher turgor loss point; Ψ) than leaves, thus evidencing a trade-off between carbon investment and drought tolerance in reproductive organs.

View Article and Find Full Text PDF