Scaffold proteins are critical hubs within cells that have the ability to modulate upstream signaling molecules and their downstream effectors to fine-tune biological responses. Although they can serve as focal points for association of signaling molecules and downstream pathways that regulate tumorigenesis, little is known about how the tumor microenvironment affects the expression and activity of scaffold proteins. This study demonstrates that hypoxia, a common element of solid tumors harboring low oxygen levels, regulates expression of a specific variant of the scaffold protein AKAP12 (A-kinase anchor protein 12), AKAP12v2, in metastatic melanoma.
View Article and Find Full Text PDFSince its activity was first reported in the mid-1960s, macrophage migration inhibitory factor (MIF) has gone from a cytokine activity modulating monocyte motility to a pleiotropic regulator of a vast array of cellular and biological processes. Studies in recent years suggest that MIF contributes to malignant disease progression on several different levels. Both circulating and intracellular MIF protein levels are elevated in cancer patients and MIF expression reportedly correlates with stage, metastatic spread and disease-free survival.
View Article and Find Full Text PDFTumor hypoxia plays a crucial role in tumorigenesis. Under hypoxia, hypoxia-inducible factor 1 alpha (HIF-1 alpha) regulates activation of genes promoting malignant progression. Under normoxia, HIF-1 alpha is hydroxylated on prolines 402 and 564 and is targeted for ubiquitin-mediated degradation by interacting with the von Hippel-Lindau protein complex (pVHL).
View Article and Find Full Text PDFIncreasingly clear is an important regulatory role for hypoxia-inducible factor 1alpha (HIF-1alpha) in the expression of the cytokine/growth factor macrophage migration inhibitory factor (MIF). The functional significance of hypoxia-induced MIF expression is revealed by findings demonstrating that HIF-1alpha-dependent MIF expression is necessary for hypoxia-induced evasion from cell senescence and that MIF is necessary for HIF-1alpha stabilization induced by hypoxia and prolyl hydroxylase (PHD) inhibitors. Both of these activities attributed to MIF likely involve the modulation of protein degratory pathways mediated by cullin-dependent E3 ubiquitin ligase complexes and their regulation by the COP9 signalosome (CSN).
View Article and Find Full Text PDF