Carotenoids are primarily responsible for the characteristic red flesh coloration of salmon. Flesh coloration is an economically and evolutionarily significant trait that varies inter- and intra-specifically, yet the underlying genetic mechanism is unknown. Chinook salmon () represents an ideal system to study carotenoid variation as, unlike other salmonids, they exhibit extreme differences in carotenoid utilization due to genetic polymorphisms.
View Article and Find Full Text PDFSalmonids show a high degree of phenotypic plasticity that can differ among genotypes, and this variation is one of the major factors contributing to uncertainty in extrapolating laboratory-based risk assessment data to nature. Many studies have examined the relative growth and survival of transgenic and non-transgenic salmonids, and the results have been highly variable due to genotype × environment interactions. The relative survival of fast- and slow-growing strains can reverse depending on the environment, but it is not clear which specific environmental characteristics are driving these responses.
View Article and Find Full Text PDFThis study compared parr from three strains of rainbow trout Oncorhynchus mykiss to examine intraspecific variation in metabolic traits, hypoxia tolerance and upper thermal tolerance in this species. At the strain level, variation in absolute aerobic scope (AAS), critical oxygen level (O ), incipient lethal oxygen saturation (ILOS) and critical thermal maximum (CT ) generally exhibited consistent differences among the strains, suggesting the possibility of functional associations among these traits. This possibility was further supported at the individual level by a positive correlation between ILOS and O and a negative correlation between O and AAS.
View Article and Find Full Text PDFDomesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles.
View Article and Find Full Text PDFThere is persistent commercial interest in the use of growth modified fishes for shortening production cycles and increasing overall food production, but there is concern over the potential impact that transgenic fishes might have if ever released into nature. To explore the ecological consequences of transgenic fish, we performed two experiments in which the early growth and survival of growth-hormone transgenic rainbow trout (Oncorhynchus mykiss) were assessed in naturalized stream mesocosms that either contained predators or were predator-free. We paid special attention to the survival bottleneck that occurs during the early life-history of salmonids, and conducted experiments at two age classes (first-feeding fry and 60 days post-first-feeding) that lie on either side of the bottleneck.
View Article and Find Full Text PDF