Publications by authors named "W E Rauser"

The aim was to determine cadmium (Cd) speciation in various plants, between buffer-soluble and acid-soluble Cd, and also within the buffer-soluble Cd. A better understanding of Cd speciation shows the relative importance of different biological mechanisms for Cd sequestration. Roots of Pistia stratiodes, Eichhornia crassipes, Agrostis gigantea, Deschampsia caespitosa and wheat Triticum turgidum var.

View Article and Find Full Text PDF

Plants produce a range of ligands for cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn). Cd- and Zn-citrate complexes are prevalent in leaves, even though malate is more abundant. In the xylem sap moving from roots to leaves, citrate and histidine are the principal ligands for Cu, Ni, and Zn.

View Article and Find Full Text PDF

Higher plants, algae and some yeasts respond to potentially toxic heavy metals such as cadmium by synthesizing phytochelatins and related cysteine-rich polypeptides. We have used X-ray absorption spectroscopy to study the nature of cadmium binding in such peptides isolated from maize (Zea mays) exposed to low levels of cadmium, and in two synthetic cadmium-peptide complexes, Cd-(gamma-Glu-Cys)3Gly and Cd-(alpha-Glu-Cys)3Gly. We have used the synthetic ions [Cd(SPh)4]2-, [Cd4(SPh)10]2- and [S4Cd10(SPh)16]4-as crystallographically defined models for the cadmium site.

View Article and Find Full Text PDF

Cd from roots of maize was partitioned in seedlings exposed to 3 microM CdSO4 for 1 to 7 d. Most of the root Cd (92-94%) was buffer soluble and provided the classical metal-induced cysteine-rich, high-molecular-weight Cd-binding complex. This complex, however, bound only part of the Cd within the roots, from 19% after 1 d of exposure to 59% by d 7.

View Article and Find Full Text PDF