TRANSVAC represents a long-running effort to accelerate the development of novel vaccines by integrating institutions from across Europe under a single collaborative framework. This initiative has empowered the global vaccine community since 2009 including contributing toward the development and optimization of vaccine candidates as well as the provision of new adjuvants, research protocols, and technologies. Scientific services were provided in support of 88 different vaccine development projects, and 400 professionals attended TRANSVAC training events on various vaccine-related topics.
View Article and Find Full Text PDFCorrinoids are cobalt-containing tetrapyrroles. They include adenosylcobalamin (vitamin B) and cobamides that function as cofactors and coenzymes for methyl transfer, radical-dependent and redox reactions. Though cobamides are the most complex cofactors in nature, they are essential in the acetyl-CoA pathway, thought to be the most ancient CO-fixation pathway, where they perform a pterin-to-cobalt-to-nickel methyl transfer reaction catalyzed by the corrinoid iron-sulphur protein (CoFeS).
View Article and Find Full Text PDFSerpentinizing hydrothermal vents are likely sites for the origin of metabolism because they produce H as a source of electrons for CO reduction while depositing zero-valent iron, cobalt, and nickel as catalysts for organic reactions. Recent work has shown that solid-state nickel can catalyze the H-dependent reduction of CO to various organic acids and their reductive amination with H and NH to biological amino acids under the conditions of H-producing hydrothermal vents and that amino acid synthesis from NH, H, and 2-oxoacids is facile in the presence of Ni. Such reactions suggest a metallic origin of metabolism during early biochemical evolution because single metals replace the function of over 130 enzymatic reactions at the core of metabolism in microbes that use the acetyl-CoA pathway of CO fixation.
View Article and Find Full Text PDFThe kinesin family member 18A () is an essential regulator of microtubule dynamics and chromosome alignment during mitosis. Functional dependency on KIF18A varies by cell type and genetic context but the heritable factors that influence this dependency remain unknown. To address this, we took advantage of the variable penetrance observed in different mouse strain backgrounds to screen for loci that modulate germ cell depletion in the absence of KIF18A.
View Article and Find Full Text PDF