Background: Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced.
View Article and Find Full Text PDFIntroduction: Assessing the potential sources of bias and variability of the Centiloid (CL) scale is fundamental for its appropriate clinical application.
Methods: We included 533 participants from AMYloid imaging to Prevent Alzheimer's Disease (AMYPAD DPMS) and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts. Thirty-two CL pipelines were created using different combinations of reference region (RR), RR and target types, and quantification spaces.
Background: Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks.
View Article and Find Full Text PDFThe reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT).
View Article and Find Full Text PDF