Outer hair cell (OHC) electromotility amplifies acoustic vibrations throughout the frequency range of hearing. Electromotility requires that the lateral membrane protein prestin undergo a conformational change upon changes in the membrane potential to produce an associated displacement charge. The magnitude of the charge displaced and the mid-reaction potential (when one half of the charge is displaced) reflects whether the cells will produce sufficient gain at the resting membrane potential to boost sound in vivo.
View Article and Find Full Text PDFAcoust Today
January 2017
Experiments on an inner ear sensory cell revealed that it converts electrical energy directly into mechanical energy at acoustic frequencies.
View Article and Find Full Text PDFFull expression of electromotility, generation of non-linear capacitance (NLC), and high-acuity mammalian hearing require prestin function in the lateral wall of cochlear outer hair cells (OHCs). Estimates of the number of prestin molecules in the OHC membrane vary, and a consensus has not emerged about the correlation between prestin expression and prestin-associated charge movement in the OHC. Using an inducible prestin-expressing cell line, we demonstrate that the charge density, but not the voltage at peak capacitance, directly correlates with the amount of prestin in the plasma membrane.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
The soft, thin membranes that envelop all living cells are 2D, nanoscale, fluid assemblies of phospholipids, sterols, proteins, and other molecules. Mechanical interactions between these components facilitate membrane function, a key example of which is ion flow mediated by the mechanical opening and closing of channels. Hearing and balance are initiated by the modulation of ion flow through mechanoreceptor channels in stereocilia membranes.
View Article and Find Full Text PDF