Human Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human-computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of exercises performed during athletic workouts. Our approach is based on the deep neural network model fed by the signal from a 9-axis motion sensor (IMU) placed on the chest.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2022
Objective: Electroencephalogram (EEG) is one of the most widely used signals in motor imagery (MI) based brain-computer interfaces (BCIs). Domain adaptation has been frequently used to improve the accuracy of EEG-based BCIs for a new user (target domain), by making use of labeled data from a previous user (source domain). However, this raises privacy concerns, as EEG contains sensitive health and mental information.
View Article and Find Full Text PDFYarkoni's analysis clearly articulates a number of concerns limiting the generalizability and explanatory power of psychological findings, many of which are compounded in infancy research. ManyBabies addresses these concerns via a radically collaborative, large-scale and open approach to research that is grounded in theory-building, committed to diversification, and focused on understanding sources of variation.
View Article and Find Full Text PDFMemetics has so far been developing in social sciences, but to fully understand memetic processes it should be linked to neuroscience models of learning, encoding, and retrieval of memories in the brain. Attractor neural networks show how incoming information is encoded in memory patterns, how it may become distorted, and how chunks of information may form patterns that are activated by many cues, forming the foundation of conspiracy theories. The rapid freezing of high neuroplasticity (RFHN) model is offered as one plausible mechanism of such processes.
View Article and Find Full Text PDFScientific research on heart rate variability (HRV) biofeedback is burdened by certain methodological issues, such as lack of consistent training quality and fidelity assessment or control conditions that would mimic the intervention. In the present study, a novel sham HRV-biofeedback training was proposed as a credible control condition, indistinguishable from the real training. The Yield Efficiency of Training Index (YETI), a quantitative measure based on the spectral distribution of heart rate during training, was suggested for training quality assessment.
View Article and Find Full Text PDF