Publications by authors named "W Drenckhan-Andreatta"

Fluid objects bounded by elastocapillary membranes display intriguing physical properties due to the interplay of capillary and elastic stresses arising upon deformation. Increasingly exploited in foam or emulsion science, the mechanical properties of elastocapillary membranes are commonly characterised by the shape analysis of inflating/deflating bubbles or drops held by circular needles. These impose complex constraints on the membrane deformation, requiring the shape analysis to be done using elaborate numerical fitting procedures of the shape equations.

View Article and Find Full Text PDF

The reliable generation of hydrogel foams remains a challenge in a wide range of sectors, including food, cosmetic, agricultural, and medical applications. Using the example of calcium alginate foams, we introduce a novel foam generation method that uses CO for the simultaneous foaming and pH reduction of the alginate solution to trigger gelation. We show that gelled foams of different gas fractions can be generated in a simple one-step process.

View Article and Find Full Text PDF

Hydrogel foams are an important sub-class of macroporous hydrogels. They are commonly obtained by integrating closely-packed gas bubbles of 10-1000 μm into a continuous hydrogel network, leading to gas volume fractions of more than 70% in the wet state and close to 100% in the dried state. The resulting wet or dried three-dimensional architectures provide hydrogel foams with a wide range of useful properties, including very low densities, excellent absorption properties, a large surface-to-volume ratio or tuneable mechanical properties.

View Article and Find Full Text PDF