Bilayers consisting of two-dimensional (2D) electron and hole gases separated by a 10 nm thick AlGaAs barrier are formed by charge accumulation in epitaxially grown GaAs. Both vertical and lateral electric transport are measured in the millikelvin temperature range. The conductivity between the layers shows a sharp tunnel resonance at a density of 1.
View Article and Find Full Text PDFElectric conductors with dimensions reduced to the nanometer scale are the prerequisite of the quantum devices upon which the future advanced electronics is expected to be based. In the past, the fabrication of one-dimensional (1D) wires has been a particular challenge because they have to be defect-free over their whole length, which can be several tens µm. Excellent 1D wires have been produced by cleaving semiconductors (GaAs, AlGaAs) in ultra high vacuum and overgrowing the pristine edge surface by molecular beam epitaxy (MBE).
View Article and Find Full Text PDFWe investigate Josephson coupling in a closely spaced quantum Hall bilayer. Reduction of the interlayer barrier from the widely used values of 10-12 nm to the present one of 8 nm leads to qualitatively different interlayer transport properties. The breakdown of interlayer coherence can be spatially confined in regions that are smaller than the device size.
View Article and Find Full Text PDF