Importance: Preterm infants are recommended to receive most vaccinations at the same postnatal age as term infants. Studies have inconsistently observed an increased risk for postvaccination apnea in preterm infants.
Objective: To compare the proportions of hospitalized preterm infants with apnea and other adverse events in the 48 hours after 2-month vaccinations vs after no vaccinations.
Importance: Limited randomized clinical trial data exist on the safety of simultaneous administration of COVID-19 and influenza vaccines.
Objective: To compare the reactogenicity, safety, and changes in health-related quality of life (HRQOL) after simultaneous vs sequential receipt of messenger RNA (mRNA) COVID-19 vaccine and quadrivalent inactivated influenza vaccine (IIV4).
Design, Setting, And Participants: This randomized, placebo-controlled clinical trial was conducted between October 8, 2021, and June 14, 2023, at 3 US sites.
The NIAID DAIDS-sponsored External Quality Assurance Program Oversight Laboratory (EQAPOL) manages an interferon-gamma (IFN-γ) enzyme-linked immunospot (ELISpot) external proficiency program. The ELISpot program evaluates the accuracy and variability of results across laboratories. The variability in the program is quantified via the dispersion, which is the ratio of the variance over the mean of the background-corrected spot-forming cells (SFC) replicates obtained under stimulation with different peptide pools (CMV, CEF).
View Article and Find Full Text PDFImportance: Quadrivalent adjuvanted inactivated influenza vaccine (aIIV4) and adjuvanted recombinant zoster vaccine (RZV) contain novel adjuvants. Data are limited on the comparative safety, reactogenicity, and health-related quality of life (HRQOL) effects of the simultaneous administration of these vaccines.
Objective: To compare the safety and reactogenicity after simultaneous doses of RZV and aIIV4 administration (opposite arms) with simultaneous doses of RZV with quadrivalent high-dose inactivated influenza vaccine [HD-IIV4]).
Seasonal influenza vaccines provide mostly strain-specific protection due to the elicitation of antibody responses focused on evolutionarily plastic antigenic sites in the hemagglutinin head domain. To direct the humoral response toward more conserved epitopes, we generated an influenza virus particle where the full-length hemagglutinin protein was replaced with a membrane-anchored, "headless" variant while retaining the normal complement of other viral structural proteins such as the neuraminidase as well as viral RNAs. We found that a single administration of a headless virus particle-based vaccine elicited high titers of antibodies that recognized more conserved epitopes on the major viral glycoproteins.
View Article and Find Full Text PDF