Publications by authors named "W D Roof"

Most bacteriophages abruptly terminate their vegetative cycle by causing lysis of the host cell. The ssDNA phage phi X174 uses a single lysis gene, E, encoding a 91-amino-acid membrane protein that causes lysis of Escherichia coli by inhibiting MraY, a conserved enzyme of murein biosynthesis. Recessive mutations in the host gene slyD (sensitivity to lysis) absolutely block E-mediated lysis and phi X174 plaque formation.

View Article and Find Full Text PDF

Protein E, a 91-residue membrane protein of phiX174, causes lysis of the host in a growth-dependent manner reminiscent of cell wall antibiotics, suggesting E acts by inhibiting peptidoglycan synthesis. In a search for the cellular target of E, we previously have isolated recessive mutations in the host gene slyD (sensitivity to lysis) that block the lytic effects of E. The role of slyD, which encodes a FK506 binding protein-type peptidyl-prolyl cis-trans isomerase, is not fully understood.

View Article and Find Full Text PDF

Most phages accomplish host lysis using a muralytic enzyme, or endolysin, and a holin, which permeabilizes the membrane at a programmed time and thus controls the length of the vegetative cycle. By contrast, lytic single-stranded RNA and DNA phages accomplish lysis by producing a single lysis protein without muralytic activity.

View Article and Find Full Text PDF

slyD encodes a 196 amino acid polypeptide that is a member of the FKBP family of cis-trans peptidyl-prolyl isomerases (PPlases). slyD mutations affect plaque formation by the phage phiX174 by blocking the action of the phage lysis protein E. Here we describe the selection of a set of spontaneous slyD mutations conferring resistance to the expression of gene E from a plasmid.

View Article and Find Full Text PDF

Recessive mutations in the slyD (sensitivity to lysis) gene were isolated by selecting for survival after induction of the cloned lysis gene E of bacteriophage phi X174 [1]. The slyD- mutation, transduced into the normal phi X174 host, Escherichia coli C, confers an absolute block on the plaque-forming ability of the wild-type phage, indicating that slyD is required for E function. slyD encodes a protein with 196 residues.

View Article and Find Full Text PDF