Publications by authors named "W D McFadyen"

Three platinum complexes in which substituted (7-OMe, 9-NH(2); 7-F, 9-NH(2); and 7-H, 9-NH(CH(2))(2)OH) 9-aminoacridine-4-carboxamides were tethered to a platinum(II)diamine moiety were synthesised and characterised at the chemical and biological level. These variants showed a decrease in cytotoxicity, as measured by IC(50) values in HeLa cells, when compared with the parent 7-H, 9-NH(2) compound. The 7-F and 9-NH(CH(2))(2)OH substituents gave rise to a small decrease in cytotoxicity, and the 7-OMe substituent resulted in a larger decrease in cytotoxicity.

View Article and Find Full Text PDF

Cisplatin analogues with an attached DNA binding moiety have a higher affinity for DNA, but often suffer from poor aqueous solubility. In this study we examined the DNA sequence specificity of more soluble cisplatin analogues containing the maltolato leaving group in both purified DNA and in intact human cells. In both environments the DNA sequence specificity of these analogues was very similar to cisplatin.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on electrospray ionization tandem mass spectrometry (ESI-MS/MS) for analyzing ternary copper(II) complexes formed with substituted terpyridine ligands and nucleobases (adenine, guanine, thymine, cytosine).
  • The fragmentation patterns observed during the mass spectrometry depend on the substituents on the terpyridine, and the yields of radical cations correlate with the nucleobases' ionization energies, indicating guanine has the lowest ionization energy and thymine the highest.
  • Radical cation formation is enhanced by electron-withdrawing substituents like nitro groups, while electron-donating groups tend to favor loss of the nucleobase, and crystal structure analysis of
View Article and Find Full Text PDF

As a means of generating fixed-charge peptide radicals in the gas phase we have examined the collision-induced dissociation (CID) chemistry of ternary [Cu(II)(terpy)(TMPP-M)]2+ complexes, where terpy = 2,2':6'2''-terpyridine and TMPP-M represents a peptide (M) modified by conversion of the N-terminal amine to a [tris(2,4,6-trimethoxyphenyl)phosphonium]acetamide (TMPP-) fixed-charge derivative. The following modified peptides were examined: oligoglycines, (Gly)n (n = 1-5), alanylglycine, glycylalanine, dialanine, trialanine and leucine-enkephaline (YGGFL). The [Cu(II)(terpy)(TMPP-M)]2+ complexes are readily formed upon electrospray ionization (ESI) of a mixture of derivatized peptide and [Cu(II)(terpy)(NO3)2] and generally fragment to form transient peptide radical cations, TMPP-M+*, which undergo rapid decarboxylation for the simple aliphatic peptides.

View Article and Find Full Text PDF

The results from an investigation of the collision-induced dissociation (CID) of the ternary complexes [Cu(II)(terpy)(AA)](2+) are presented (terpy = 2,2':6',2' '-terpyridine; AA = one of the twenty common amino acids). These complexes show a rich gas-phase chemistry, which depends on the identity of the amino acid. For the histidine-, lysine- and tryptophan-containing complexes, oxidative dissociation of the amino acid is observed, yielding the amino acid radical cation.

View Article and Find Full Text PDF