Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.
View Article and Find Full Text PDFGlycosylated RNAs (glycoRNAs) have recently emerged as a new class of molecules of substantial interest owing to their potential roles in cellular processes and diseases. However, studying glycoRNAs is challenging owing to the lack of effective research tools including, but not limited to, imaging techniques to study the spatial distribution of glycoRNAs. Recently, we reported the development of a glycoRNA imaging technique, called sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA), to visualize sialic acid-containing glycoRNAs with high sensitivity and specificity.
View Article and Find Full Text PDFMonoclonal antibody (mAb) solution viscosity in ultra-high concentration formulations is a key developability consideration in mAb development risk mitigation strategies that has implications for downstream processing and patient safety. Predicting viscosity at therapeutically relevant concentrations remains critical, despite the need for large mAb quantities for viscosity measurement being prohibitive. Using a panel of IgG1s, we examined the suitability of viscosity prediction and fitting models at different mAb test concentration regimes.
View Article and Find Full Text PDFBackground: Malone antegrade continence enemas (MACE) are increasingly being used to manage severe constipation and fecal incontinence in children. Despite advances in minimally invasive pediatric colorectal surgery, single-incision laparoscopic surgery (SILS) for MACE creation remains relatively unexplored. This study, featuring the largest cohort to date, evaluates the feasibility, safety, and clinical outcomes of SILS MACE creation in children.
View Article and Find Full Text PDFManagement of wildlife populations is most effective with a thorough understanding of the interplay among vital rates, population growth, and density-dependent feedback; however, measuring all relevant vital rates and assessing density-dependence can prove challenging. Integrated population models have been proposed as a method to address these issues, as they allow for direct modeling of density-dependent pathways and inference on parameters without direct data. We developed integrated population models from a 25-year demography dataset of Northern Bobwhites () from southern Georgia, USA, to assess the demographic drivers of population growth rates and to estimate the strength of multiple density-dependent processes simultaneously.
View Article and Find Full Text PDF