Objectives: Recently, epicardial adipose tissue (EAT) assessed by CT was identified as an independent mortality predictor in patients with various cardiac diseases. Our goal was to develop a deep learning pipeline for robust automatic EAT assessment in CT.
Methods: Contrast-enhanced ECG-gated cardiac and thoraco-abdominal spiral CT imaging from 1502 patients undergoing transcatheter aortic valve replacement (TAVR) was included.
Background: The acquisition of contrast-enhanced T1 maps to calculate extracellular volume (ECV) requires contrast agent administration and is time consuming. This study investigates generative adversarial networks for contrast-free, virtual extracellular volume (vECV) by generating virtual contrast-enhanced T1 maps.
Methods And Results: This retrospective study includes 2518 registered native and contrast-enhanced T1 maps from 1000 patients who underwent cardiovascular magnetic resonance at 1.
Objectives: To investigate the potential and limitations of utilizing transformer-based report annotation for on-site development of image-based diagnostic decision support systems (DDSS).
Methods: The study included 88,353 chest X-rays from 19,581 intensive care unit (ICU) patients. To label the presence of six typical findings in 17,041 images, the corresponding free-text reports of the attending radiologists were assessed by medical research assistants ("gold labels").
IEEE Trans Med Imaging
March 2024
In cardiac cine magnetic resonance imaging (MRI), the heart is repeatedly imaged at numerous time points during the cardiac cycle. Frequently, the temporal evolution of a certain region of interest such as the ventricles or the atria is highly relevant for clinical diagnosis. In this paper, we devise a novel approach that allows for an automatized propagation of an arbitrary region of interest (ROI) along the cardiac cycle from respective annotated ROIs provided by medical experts at two different points in time, most frequently at the end-systolic (ES) and the end-diastolic (ED) cardiac phases.
View Article and Find Full Text PDFPurpose: To investigate survival prediction in patients undergoing transcatheter aortic valve replacement (TAVR) using deep learning (DL) methods applied directly to pre-interventional CT images and to compare performance with survival models based on scalar markers of body composition.
Method: This retrospective single-center study included 760 patients undergoing TAVR (mean age 81 ± 6 years; 389 female). As a baseline, a Cox proportional hazards model (CPHM) was trained to predict survival on sex, age, and the CT body composition markers fatty muscle fraction (FMF), skeletal muscle radiodensity (SMRD), and skeletal muscle area (SMA) derived from paraspinal muscle segmentation of a single slice at L3/L4 level.