Publications by authors named "W Choe"

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

Entropy-driven strategy enables the systematic design of complex systems by using entropy as a quantifiable design parameter for the degree of mixing. In this study, we present mixed-linker zeolitic imidazolate frameworks (ZIFs), sod-ZIF-1 series, that features two types of six-membered rings (6MRs) with aperture sizes of 3.4 Å and 1.

View Article and Find Full Text PDF

Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death.

View Article and Find Full Text PDF

Paper crafts, such as origami and kirigami, have become an interdisciplinary research theme transportable from art to science, and further to engineering. Kirigami-inspired architectural design strategies allow the establishment of three-dimensional (3D) mechanical linkages with unprecedented mechanical properties. Herein, we report a crystalline zeolitic imidazolate framework (ZIF), displaying folding mechanics based on a kirigami tessellation, originated from the double-corrugation surface (DCS) pattern.

View Article and Find Full Text PDF

Introduction: Pulsed-field ablation (PFA) and fluoroless ablation (FA) are emerging techniques in contemporary in electrophysiology. With widespread use of 3D electroanatomic mapping systems and advanced intracardiac echo (ICE) imaging, fluoroless ablation has become more widely adopted. However, with the importance of tissue contact for lesion durability, initial PFA has been used with fluoroscopic guidance, but both ICE and electroanatomic mapping make fluoroless PFA feasible.

View Article and Find Full Text PDF