Background: Acute ischemic stroke, especially hemorrhage cerebral infarction (HCI), resulted in the leading causes of mortality and long-term disability across populations. However, fewer researches have focused on the risk factors of first admission and recurrence of HCI.
Methods: The study included 1857 patients who underwent cerebral infarction with or without hemorrhagic transformation.
Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous HO and O. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiO-PEG) can generate reactive oxygen species in an excitation-free and HO- and O-independent manner. Upon exposure to the tumor microenvironment, NaBiO-PEG undergoes continuous H-accelerated hydrolysis with •OH and O generation through electron transfer-mediated Bi-to-Bi conversion and lattice oxygen transformation.
View Article and Find Full Text PDFThe widespread accumulation of androgenic steroid endocrine disruptors in water and food has garnered increasing attention due to their significant risks to ecosystems and human health. These steroids, which cannot be completely eliminated, highlight the urgent need for advanced detection technologies. In this study, we present a novel emulsion-induced interface-anisotropic assembly strategy to synthesize bowl-like mesoporous polydopamine (PDA) particles, which exhibit high sensitivity in surface-enhanced Raman scattering (SERS) detection.
View Article and Find Full Text PDFThe growth of population and changes in dietary structure have led to a continuous increase in demand for livestock and poultry products, resulting in the increase of the gaseous reactive nitrogen (GNr) emissions from livestock and poultry breeding systems and posing a threat to the human and ecosystem health. The characteristics from GNr emissions of six livestock and poultry breeding systems at the provincial level of China in 2020 were evaluated with the framework of life cycle analysis. Additionally, this study explored the impact of silage maize replacing traditional maize as feed on reducing GNr emissions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping.
View Article and Find Full Text PDF