Background: Acanthamoeba castellanii forms a resistant cyst that protects the parasite against the host's immune response. Acanthamoeba Type-I metacaspase (Acmcp) is a caspase-like protein that has been found to be expressed during the encystations. Dictyostelium discoideum is an organism closely related to Acanthamoeba useful for studying the molecular function of this protozoan caspase-like protein.
View Article and Find Full Text PDFCaspases are cysteine proteases that are important regulators of programmed cell death in animals. Two novel relatives to members of the caspase families metacaspases and paracaspase have been discovered. Metacaspase type-1 was identified in Acanthamoeba castellanii, an opportunistic protozoan parasite that causes severe diseases in humans.
View Article and Find Full Text PDFAcanthamoeba castellanii is a free-living protozoan. Some strains are opportunistic pathogens. A type-I metacaspase was identified in A.
View Article and Find Full Text PDFThe complete sequence of a type-1 metacaspase from Acanthamoeba castellanii is reported comprising 478 amino acids. The metacaspase was recovered from an expression library using sera specific for membrane components implicated in stimulating encystation. A central domain of 155 amino acid residues contains the Cys/His catalytic dyad and is the most conserved region containing at least 30 amino acid identities in all metacaspases.
View Article and Find Full Text PDFGastrointestinal (GI) smooth muscle diseases represent a major health concern affecting in excess of 2 million people each year. Little is currently known regarding the molecular mechanisms controlling either normal or pathogenic GI smooth muscle development. In an effort to identify the specific gene products responsible for modulating GI smooth muscle cell (SMC) differentiation, we performed differential display on distinct intestinal SMC (ISMC) phenotypes.
View Article and Find Full Text PDF