Publications by authors named "W C Richardson"

A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions.

View Article and Find Full Text PDF

The haptic fidelity of biomimetic materials used in the design of procedural task trainers is of growing interest to the medical community. Shore hardness has been proposed as a method for assessing tissue biomechanics and replicating the results as a way to increase the fidelity of biomimetics to tissues. However, there is limited research on the reliability of human tissue measurements using Shore scales.

View Article and Find Full Text PDF

The NRF2-KEAP1 interaction is central for cytoprotection against stresses, giving it high clinical significance. Covalent modification of KEAP1 is an efficient approach, but the covalent inhibitors used in the clinic carry undesired side effects originating in their moderate selectivity. Starting with a phenotypic screen, we identified a new covalent inhibitor chemotype that was optimized to deliver a series of potent and highly selective KEAP1 binders.

View Article and Find Full Text PDF

Ribozymes are small catalytic RNA sequences capable of nucleotide-specific self-cleavage found widespread in nature. Ribozyme cleavage generates distinct 2',3'-phosphate and 5'-hydroxyl termini that resemble substrates for recently characterized RNA repair pathways in cells. We report that ribozyme cleavage of two separate mRNAs activated their scarless trans-ligation and translation into full-length protein in eukaryotic cells, a process that we named StitchR (for Stitch RNA).

View Article and Find Full Text PDF