Publications by authors named "W C Inkret"

Metal tritide is widely used for research, purification, compression, and storage of tritium. The current understanding of metal tritide and its radiation dosimetry for internal exposure is limited, and ICRP publications do not provide the tritium dosimetry for hafnium tritide. The current radiation protection guidelines for metal tritide particles (including hafnium tritide) are based on the assumption that their biological behavior is similar to tritiated water, which is completely absorbed by the body.

View Article and Find Full Text PDF

Metal tritides with low dissolution rates may have residence times in the lungs which are considerably longer than the biological half-time normally associated with tritium in body water, resulting in long-term irradiation of the lungs by low energy beta particles and bremsstrahlung X rays. Samples of hafnium tritide were placed in a lung simulant fluid to determine approximate lung dissolution rates. Hafnium hydride samples were analysed for particle size distribution with a scanning electron microscope.

View Article and Find Full Text PDF

The problem of choosing a prior distribution for the Bayesian interpretation of measurements (specifically internal dosimetry measurements) is considered using a theoretical analysis and by examining historical tritium and plutonium urine bioassay data from Los Alamos. Two models for the prior probability distribution are proposed: (1) the log-normal distribution, when there is some additional information to determine the scale of the true result, and (2) the 'alpha' distribution (a simplified variant of the gamma distribution) when there is not. These models have been incorporated into version 3 of the Bayesian internal dosimetry code in use at Los Alamos (downloadable from our web site).

View Article and Find Full Text PDF

The classical statistics approach used in health physics for the interpretation of measurements is deficient in that it does not take into account "needle in a haystack" effects, that is, correct identification of events that are rare in a population. This is often the case in health physics measurements, and the false positive fraction (the fraction of results measuring positive that are actually zero) is often very large using the prescriptions of classical statistics. Bayesian statistics provides a methodology to minimize the number of incorrect decisions (wrong calls): false positives and false negatives.

View Article and Find Full Text PDF

Cell inactivation after exposure to collimated 3.5-MeV alpha particles in three hamster cell lines, V79, CHO-10B, and HS-23, one mouse cell line, C3H 10T1/2, and a human skin fibroblast cell line were studied. Several parameters were investigated for each cell line.

View Article and Find Full Text PDF