Understanding the responses of rare species to altered fire disturbance regimes is an ongoing challenge for ecologists. We asked: are there associations between fire regimes and plant rarity across different vegetation communities? We combined 62 years of fire history records with vegetation surveys of 86 sites across three different dry sclerophyll vegetation communities in Booderee National Park, south-east Australia to: (1) compare associations between species richness and rare species richness with fire regimes, (2) test whether fire regimes influence the proportion of rare species present in an assemblage, and (3) examine whether rare species are associated with particular fire response traits and life history. We also sought to determine if different rarity categorisations influence the associations between fire regimes and plant rarity.
View Article and Find Full Text PDFFire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post-fire herbivory is needed to better manage natural environments. We investigated the effects of post-fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia.
View Article and Find Full Text PDFQuantifying the factors associated with the presence and abundance of species is critical for conservation. Here, we quantify the factors associated with the occurrence of the Southern Greater Glider in the forests of the Central Highlands of Victoria, south-eastern Australia. We gathered counts of animals along transects and constructed models of the probability of absence, and then the abundance if animals were present (conditional abundance), based on species' associations with forest type, forest age, the abundance of denning sites in large old hollow-bearing trees, climatic conditions, and vegetation density.
View Article and Find Full Text PDFGermline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.
View Article and Find Full Text PDF