Trichoderma spp. are ubiquitous rhizosphere fungi capable of producing several classes of secondary metabolites that can modify the dynamics of the plant-associated microbiome. However, the bacterial-fungal mechanisms that mediate these interactions have not been fully characterized.
View Article and Find Full Text PDFPeptides and analogs such as peptide nucleic acids (PNA) are promising tools and therapeutics, but the cell membrane remains a barrier to intracellular targets. Conjugation to classical cell penetrating peptides (CPPs) such as pTat (tat) and pAntp (penetratin) facilitates delivery; however, efficiencies are low. Lack of explicit design principles hinders rational improvement.
View Article and Find Full Text PDFTo better understand the sequence-structure-function relationships that control the activity and selectivity of membrane-permeabilizing peptides, we screened a peptide library, based on the archetypal pore-former melittin, for loss-of-function variants. This was accomplished by assaying library members for failure to cause leakage of entrapped contents from synthetic lipid vesicles at a peptide-to-lipid ratio of 1:20, 10-fold higher than the concentration at which melittin efficiently permeabilizes the same vesicles. Surprisingly, about one-third of the library members are inactive under these conditions.
View Article and Find Full Text PDFThe permeability barrier imposed by cellular membranes limits the access of exogenous compounds to the interior of cells. Researchers and patients alike would benefit from efficient methods for intracellular delivery of a wide range of membrane-impermeant molecules, including biochemically active small molecules, imaging agents, peptides, peptide nucleic acids, proteins, RNA, DNA, and nanoparticles. There has been a sustained effort to exploit cell penetrating peptides (CPPs) for the delivery of such useful cargoes in vitro and in vivo because of their biocompatibility, ease of synthesis, and controllable physical chemistry.
View Article and Find Full Text PDF