Publications by authors named "W Belzig"

We propose a variational wave function to represent quantum skyrmions as bosonic operators. The operator faithfully reproduces two fundamental features of quantum skyrmions: their classical magnetic order and a "quantum cloud" of local spin-flip excitations. Using exact numerical simulations of the ground states of a 2D chiral magnetic model, we find two regions in the single-skyrmion state diagram distinguished by their leading quantum corrections.

View Article and Find Full Text PDF

We investigate the direction-dependent switching current in a flux-tunable four-terminal Josephson junction defined in an InAs/Al two-dimensional heterostructure. The device exhibits the Josephson diode effect with switching currents that depend on the sign of the bias current. The superconducting diode efficiency, reaching a maximum of |η| ≈ 34%, is widely tunable─both in amplitude and sign─as a function of magnetic fluxes and gate voltages.

View Article and Find Full Text PDF

We study the interplay between Coulomb blockade and superconductivity in a tunable superconductor-superconductor-normal-metal single-electron transistor. The device is realized by connecting the superconducting island via an oxide barrier to the normal-metal lead and with a break junction to the superconducting lead. The latter enables Cooper pair transport and (multiple) Andreev reflection.

View Article and Find Full Text PDF

Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current-phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current-phase relation changes amplitude and skewness, and develops dips.

View Article and Find Full Text PDF

In hybrid Josephson junctions with three or more superconducting terminals coupled to a semiconducting region, Andreev bound states may form unconventional energy band structures, or Andreev matter, which are engineered by controlling superconducting phase differences. Here we report tunnelling spectroscopy measurements of three-terminal Josephson junctions realised in an InAs/Al heterostructure. The three terminals are connected to form two loops, enabling independent control over two phase differences and access to a synthetic Andreev band structure in the two-dimensional phase space.

View Article and Find Full Text PDF