Background: Spearmint and peppermint teas are widely consumed around the world for their flavor and therapeutic properties. Dynamic headspace sampling (HS) coupled to gas chromatography/mass spectrometry (GC-MS) with principal component analysis (PCA) of 'fingerprint' volatile profiles were used to investigate 27 spearmint and peppermint teas. Additionally, comparisons between mint teas were undertaken with an electronic nose (enose).
View Article and Find Full Text PDFWe present a measurement of angular observables and a test of lepton flavor universality in the B→K^{*}ℓ^{+}ℓ^{-} decay, where ℓ is either e or μ. The analysis is performed on a data sample corresponding to an integrated luminosity of 711 fb^{-1} containing 772×10^{6} BB[over ¯] pairs, collected at the ϒ(4S) resonance with the Belle detector at the asymmetric-energy e^{+}e^{-} collider KEKB. The result is consistent with standard model (SM) expectations, where the largest discrepancy from a SM prediction is observed in the muon modes with a local significance of 2.
View Article and Find Full Text PDFThe interference fragmentation function translates the fragmentation of a quark with a transverse projection of the spin into an azimuthal asymmetry of two final-state hadrons. In e(+)e(-) annihilation the product of two interference fragmentation functions is measured. We report nonzero asymmetries for pairs of charge-ordered π(+)π(-) pairs, which indicate a significant interference fragmentation function in this channel.
View Article and Find Full Text PDFPhys Rev Lett
November 2006
We report the first measurements of the doubly charmed baryonic B decays B --> Lambda c+ Lambda c- K. The B+ --> Lambda c+ Lambda c- K+ decay is observed with a branching fraction of (6.5(-0.
View Article and Find Full Text PDFThe Collins effect connects transverse quark spin with a measurable azimuthal dependence in the yield of hadronic fragments around the quark's momentum vector. Using two different reconstruction methods, we find evidence of statistically significant azimuthal asymmetries for charged pion pairs in e(+)e(-) annihilation at a center-of-mass energy of 10.52 GeV, which can be attributed to a transverse polarization of the primordial quarks.
View Article and Find Full Text PDF