A full 3D analysis of the hierarchical porosity in sp. diatom structures was carried out by using a multiscale approach that combines three advanced volumetric imaging techniques with resolutions and fields of view covering all the porous characteristics of such complex architectures: electron tomography, "slice and view" approach that uses a dual-beam microscope (FIB-SEM), and array tomography consisting of serial imaging of ultrathin specimen sections. This multiscale approach allowed the whole porosity network to be quantified and provided an unprecedented structural insight into these natural nanostructured materials with internal organization ranging from micrometer to nanometer.
View Article and Find Full Text PDFSingle-atom catalysts represent an intense topic of research due to their interesting catalytic properties for a wide range of reactions. Clarifying the nature of the active sites of single-atom catalysts under realistic working conditions is of paramount importance for the design of performant materials. We have prepared an Ir single-atom catalyst supported on a nitrogen-rich carbon substrate that has proven to exhibit substantial activity toward the hydrogenation of butadiene with nearly 100% selectivity to butenes even at full conversion.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2021
Many magnetotactic bacteria (MTB) biomineralize magnetite crystals that nucleate and grow inside intracellular membranous vesicles originating from invaginations of the cytoplasmic membrane. The crystals together with their surrounding membranes are referred to as magnetosomes. Magnetosome magnetite crystals nucleate and grow using iron transported inside the vesicle by specific proteins.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been extensively investigated during the last two decades. More recently, a family of hybrid materials (, MOF@COF) has emerged as particularly appealing for gas separation and storage, catalysis, sensing, and drug delivery. MOF@COF hybrids combine the unique characteristics of both MOF and COF components and exhibit peculiar properties including high porosity and large surface area.
View Article and Find Full Text PDF