Human walking gait is a personal story written by the body, a tool for understanding biological identity in healthcare and security. Gait analysis methods traditionally diverged between these domains but are now merging their complementary strengths to unlock new possibilities. Using large ground reaction force (GRF) datasets for gait recognition is a way to uncover subtle variations that define individual gait patterns.
View Article and Find Full Text PDFThe studded outsole of a soccer boot provides additional traction to players to minimise the risk of slipping while performing high-speed manoeuvres. As excessive traction can lead to foot fixation and injury risk, there has been significant research surrounding the influence of stud configuration on the level of traction generated. This previous research, however, has predominately focused on the stud patterns, foot morphology and lower limb loading patterns of male players.
View Article and Find Full Text PDFBackground: Soccer boots are produced with different stud patterns and configurations to provide players with extra traction on specific surface types to minimize slipping and improve player performance. Excessive traction, however, can lead to foot fixation injuries, particularly anterior cruciate ligament tears.
Purpose/hypothesis: The purpose of this study was to explore the translational traction properties of 5 different outsole configurations moving in 4 different directions across both natural grass and artificial grass (AG) playing surfaces.
N Engl J Med
September 2024