Publications by authors named "W B Demore"

Relative rate experiments were used to measure ratios of chemical kinetics rate constants as a function of temperature for the reactions of OH with eight fluoroethers, including CF3OCF2CHF2, CF3OCF2CHFCF3, CHF2CF2OCHF2, CF3CHFCF2OCH2CF3, (CF3)2CHOCHF2, CF2HCF2OCH2CF3, CHF2CF2OCHFCF3, and CF3CH2OCH2CF3. The temperature ranges were about 270-400 K. Each compound was measured against at least two references.

View Article and Find Full Text PDF

Relative rate experiments were used to measure ratios of chemical kinetics rate constants as a function of temperature for the reactions of OH with isobutane, isopentane, 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,3,4-trimethylpentane, n-heptane, n-octane, cyclopentane, cyclohexane, and cycloheptane. The results have been used to calibrate a structure-reactivity rate constant estimation method for k(298 K) which, when combined with previously determined relationships between k(298 K) and the Arrhenius parameters, is capable of determining the temperature dependence accurately. The estimation method reproduces most of the observed rate data within experimental accuracy but appears to fail for 2,3-dimethylbutane, which has an anomalously high rate constant.

View Article and Find Full Text PDF

Atmospheric heavy ozone is enriched in the isotopes 18O and 17O. The magnitude of this enhancement, of the order of 100%, is very large compared with that commonly known in atmospheric chemistry and geochemistry. The heavy oxygen atom in heavy ozone is therefore useful as a tracer of chemical species and pathways that involve ozone or its derived products.

View Article and Find Full Text PDF

We propose a novel mechanism for isotopic exchange between CO2 and O3 via O(1D) + CO2 --> CO3* followed by CO3* --> CO2 + O(3P). A one-dimensional model calculation shows that this mechanism can account for the enrichment in 18O in the stratospheric CO2 observed by Gamo et al. [1989], using the heavy O3 profile observed by Mauersberger [1981].

View Article and Find Full Text PDF