Stroke is a major cause of disability for adults over 40 years of age. While research into animal models has prioritized treatments aimed at diminishing post-stroke damage, no studies have investigated the response to a severe stroke injury in a highly regenerative adult mammal. Here we investigate the effects of transient ischemia on adult spiny mice, Acomys cahirinus, due to their ability to regenerate multiple tissues without scarring.
View Article and Find Full Text PDFPremise: The extraction of high-quality RNA is the critical first step for the analysis of gene expression and gene space. This remains particularly challenging in plants, and especially in ferns, where the disruption of the cell wall and separation of organic compounds from nucleic acids is not trivial.
Methods: We developed a cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol that consistently performs well across a large phylogenetic breadth of ferns-a lineage of plants high in secondary compounds-and in an array of tissue types.
Physiologically relevant in vitro models are a priority in predictive toxicology to replace and/or reduce animal experiments. The compromised toxicant metabolism of many immortalized human liver cell lines grown as monolayers as compared to in vivo metabolism limits their physiological relevance. However, recent efforts to culture liver cells in a 3D environment, such as spheroids, to better mimic the in vivo conditions, may enhance the toxicant metabolism of human liver cell lines.
View Article and Find Full Text PDFPolyploidy is an important evolutionary process throughout eukaryotes, particularly in flowering plants. Duplicated gene pairs (homoeologs) in allopolyploids provide additional genetic resources for changes in molecular, biochemical, and physiological mechanisms that result in evolutionary novelty. Therefore, understanding how divergent genomes and their regulatory networks reconcile is vital for unraveling the role of polyploidy in plant evolution.
View Article and Find Full Text PDFOsteoderms are bony plates found in the skin of vertebrates, mostly commonly in reptiles where they have evolved independently multiple times, suggesting the presence of a gene regulatory network that is readily activated and inactivated. They are absent in birds and mammals except for the armadillo. However, we have discovered that in one subfamily of rodents, the Deomyinae, there are osteoderms in the skin of their tails.
View Article and Find Full Text PDF