Publications by authors named "W B Bair"

Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys.

View Article and Find Full Text PDF

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra ().

View Article and Find Full Text PDF

A paradox exists in our understanding of motion processing in the primate visual system: neurons in the dorsal motion processing stream often strikingly fail to encode long-range and perceptually salient jumps of a moving stimulus. Psychophysical studies suggest that such long-range motion, which requires integration over more distant parts of the visual field, may be based on higher-order motion processing mechanisms that rely on feature or object tracking. Here, we demonstrate that ventral visual area V4, long recognized as critical for processing static scenes, includes neurons that maintain direction selectivity for long-range motion, even when conflicting local motion is present.

View Article and Find Full Text PDF

The Pearson correlation coefficient squared, , is an important tool used in the analysis of neural data to quantify the similarity between neural tuning curves. Yet this metric is biased by trial-to-trial variability; as trial-to-trial variability increases, measured correlation decreases. Major lines of research are confounded by this bias, including those involving the study of invariance of neural tuning across conditions and the analysis of the similarity of tuning across neurons.

View Article and Find Full Text PDF

Background: Functional Near-Infrared Spectrometry (fNIRS) is a novel neuroimaging method that can detect brain activity during functional activities. The prefrontal cortex and supplemental motor area (SMA) are active during normal and fast speed walking. However, it is unclear how age difference affects brain activity in the dorsolateral prefrontal cortex (DLPFC) and SMA when walking at different speeds.

View Article and Find Full Text PDF