Publications by authors named "W Assmus"

We report an experimental and theoretical study of the low-temperature specific heat C and magnetic susceptibility χ of the layered anisotropic triangular-lattice spin-1/2 Heisenberg antiferromagnets Cs_{2}CuCl_{4-x}Br_{x} with x=0, 1, 2, and 4. We find that the ratio J^{'}/J of the exchange couplings ranges from 0.32 to ≈0.

View Article and Find Full Text PDF

The crystal structures of two crown-ether-coordinated caesium halogen salt hydrates, namely di-μ-bromido-bis[aqua(1,4,7,10,13,16-hexaoxacyclooctadecane)caesium(I)] dihydrate, [Cs2Br2(C12H24O6)2(H2O)2]·2H2O, (I), and poly[[diaquadi-μ-chlorido-μ-(1,4,7,10,13,16-hexaoxacyclooctadecane)dicaesium(I)] dihydrate], {[Cs2Cl2(C12H24O6)(H2O)2]·2H2O}n, (II), are reported. In (I), all atoms are located on general positions. In (II), the Cs(+) cation is located on a mirror plane perpendicular to the a axis, the chloride anion is located on a mirror plane perpendicular to the c axis and the crown-ether ring is located around a special position with site symmetry 2/m, with two opposite O atoms exactly on the mirror plane perpendicular to the a axis; of one water molecule, only the O atom is located on a mirror plane perpendicular on the a axis, while the other water molecule is completely located on a mirror plane perpendicular to the c axis.

View Article and Find Full Text PDF

Inelastic neutron scattering measurements show the existence of a strong two-spinon continuum in the frustrated ferromagnetic spin-1/2 chain compound LiCuVO4. The dynamic magnetic susceptibility is well described by a mean-field model of two coupled interpenetrating antiferromagnetic Heisenberg chains. The extracted values of the exchange integrals are in good agreement with the static magnetic susceptibility data and an earlier spin-wave description of the bound state near the lower boundary of the two-spinon continuum.

View Article and Find Full Text PDF

By means of thermal expansion and specific heat measurements on the high-pressure phase of (VO)(2)P(2)O(7), the effects of two energy scales of the weakly dimerized antiferromagnetic S=1/2 Heisenberg chain are explored. The low-energy scale, given by the spin gap Delta, is found to manifest itself in a pronounced thermal expansion anomaly. A quantitative analysis, employing the density-matrix renormalization-group approach for transfer matrices calculations, shows that this feature originates from changes in the magnetic entropy with respect to Delta, partial differentialS(m)/partial differentialDelta.

View Article and Find Full Text PDF