We report direct measurements of the magnetic field screening at the limits of the Meissner phase for two superconducting niobium (Nb) samples. The samples are processed with two different surface treatments that have been developed for superconducting radio-frequency (SRF) cavity applications-a "baseline" treatment and an oxygen-doping ("O-doping") treatment. The measurements show: (1) that the screening length is significantly longer in the "O-doping" sample compared to the "baseline" sample; (2) that the screening length near the limits of the Meissner phase increases with applied field; (3) the evolution of the screening profile as the material transitions from the Meissner phase to the mixed phase; and (4) a demonstration of the absence of any screening profile for the highest applied field, indicative of the full flux entering the sample.
View Article and Find Full Text PDFAims: We aimed to identify mechanisms underlying the tolerance of Proteus mirabilis-a common cause of catheter associated urinary tract infection-to the clinically used biocides chlorhexidine (CHD) and octenidine (OCT).
Methods And Results: We adapted three clinical isolates to grow at concentrations of 512 µg ml-1 CHD and 128 µg ml-1 OCT. Genetic characterization and complementation studies revealed mutations inactivating the smvR repressor and increasing smvA efflux expression were associated with adaptation to both biocides.
A new high field spectrometer has been built to extend the capabilities of the β-detected nuclear magnetic resonance (β-NMR) facility at TRIUMF. This new beamline extension allows β-NMR spectroscopy to be performed with fields up to 200 mT parallel to a sample's surface (perpendicular to the ion beam), allowing depth-resolved studies of local electromagnetic fields with spin polarized probes at a much higher applied magnetic field than previously available in this configuration. The primary motivation and application is to allow studies of superconducting radio frequency (SRF) materials close to the critical fields of Nb metal, which is extensively used to fabricate SRF cavities.
View Article and Find Full Text PDFThe complexation of Mg with adenosine 5'-triphosphate (ATP) is omnipresent in biochemical energy conversion, but is difficult to interrogate directly. Here we use the spin- β-emitter Mg to study Mg -ATP complexation in 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) solutions using β-radiation-detected nuclear magnetic resonance (β-NMR). We demonstrate that (nuclear) spin-polarized Mg, following ion-implantation from an accelerator beamline into EMIM-Ac, binds to ATP within its radioactive lifetime before depolarizing.
View Article and Find Full Text PDF