Publications by authors named "W Aline Ingelson-Filpula"

Little brown bats () cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms.

View Article and Find Full Text PDF

The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression.

View Article and Find Full Text PDF

Naked mole-rats, Heterocephalus glaber, are champion hypoxia-tolerant rodents that live under low oxygen conditions in their subterranean burrows. Detrimental effects of low oxygen can be mitigated through metabolic rate depression (MRD), metabolic reorganization, and global downregulation of nonessential cellular processes. Recent research has progressively implicated epigenetic modifications - rapid, reversible changes to gene expression that do not alter the DNA sequence itself - as major players in implementing and maintaining MRD.

View Article and Find Full Text PDF

The thirteen-lined ground squirrel is a rodent that lives throughout the United States and Canada and uses metabolic rate depression to facilitate circannual hibernation which helps it survive the winter. Metabolic rate depression is the reorganization of cellular physiology and molecular biology to facilitate a global downregulation of nonessential genes and processes, which conserves endogenous fuel resources and prevents the buildup of waste byproducts. Facilitating metabolic rate depression requires a complex interplay of regulatory approaches, including post-transcriptional modes such as microRNA.

View Article and Find Full Text PDF

The rapid and reversible nature of microRNA (miRNA) transcriptional regulation is ideal for implementing global changes to cellular processes and metabolism, a necessary asset for the freeze-tolerant gray tree frog (Dryophytes versicolor). D. versicolor can freeze up to 42% of its total body water during the winter and then thaw completely upon more favorable conditions of spring.

View Article and Find Full Text PDF