Publications by authors named "W A Zehring"

It is widely acknowledged that the human immune system plays a crucial role in preventing the formation and progression of innumerable types of cancer (1). The mechanisms by which this occurs are numerous, including contributions from both the innate and adaptive immune systems. As such, immunotherapy has long been believed to be an auspicious solution in the treatment of malignancy (2).

View Article and Find Full Text PDF

We present a physical and molecular genetic characterization of Drosophila melanogaster TFIIE (dTFIIE), a component of the basal RNA polymerase II transcription apparatus. We have purified dTFIIE to near homogeneity from nuclear extracts of Drosophila embryos and found that it is composed of two subunits with apparent molecular weights of 55 and 38 kDa. Peptide sequence information derived from the two subunits was used to isolate the corresponding cDNA clones, revealing that dTFIIE and human TFIIE share extensive amino acid similarity.

View Article and Find Full Text PDF

We show that the mammalian transcription Sp1 stimulates accurate transcription in a partially fractionated RNA polymerase II-dependent system from Drosophila cultured cells. Moreover, the extent of stimulation is equal for intact RNA polymerase II (polymerase IIA) and polymerase lacking the unique carboxyl-terminal domain of the largest subunit (polymerase IIB). We conclude that in this system Sp1 interacts with a component of the transcription machinery, other than the carboxyl-terminal domain, which is preserved between mammals and insects.

View Article and Find Full Text PDF

We have characterized RpII215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster. DNA sequencing and nuclease S1 analyses provided the primary structure of this gene, its 7 kb RNA and 215 kDa protein products. The amino-terminal 80% of the subunit harbors regions with strong homology to the beta' subunit of Escherichia coli RNA polymerase and to the largest subunits of other eukaryotic RNA polymerases.

View Article and Find Full Text PDF