A nondispersive infrared gas analyzer was demonstrated for investigating metal alkylamide precursor delivery for microelectronics vapor deposition processes. The nondispersive infrared analyzer was designed to simultaneously measure the partial pressure of pentakis(dimethylamido) tantalum, a metal precursor employed in high volume manufacturing vapor deposition processes to deposit tantalum nitride, and dimethylamine, the primary decomposition product of pentakis(dimethylamido) tantalum at typical delivery conditions for these applications. This sensor was based on direct absorption of pentakis(dimethylamido) tantalum and dimethylamine in the fingerprint spectral region.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
March 2019
Thin film vapor deposition processes, e.g., chemical vapor deposition, are widely used in high-volume manufacturing of electronic and optoelectronic devices.
View Article and Find Full Text PDFThe performance of a bubbler to deliver the low-volatility, liquid cobalt precurso - -(Bu-acetylene) dicobalthexacarbonyl (CCTBA) for reduced-pressure chemical vapor deposition and atomic layer deposition processes was characterized. A relatively large process window was investigated by varying carrier gas flow rate, system pressure, and bubbler temperature. For this range of conditions, the CCTBA partial pressure was measured using a custom-designed non-dispersive infrared gas analyzer, and the CCTBA flow rates were derived from these partial pressure measurements.
View Article and Find Full Text PDFHigh volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely relied upon sublimation and transport of solid precursors with minimal control over vapor phase flux and gas-phase chemistry, which are critical for scaling up laboratory processes to manufacturing settings. To address these issues, we report a new pulsed metalorganic chemical vapor deposition (MOCVD) route for MoS film growth in a research-grade single-wafer reactor.
View Article and Find Full Text PDFA nondispersive infrared (NDIR) gas analyzer was demonstrated for measuring the vapor-phase density of the carbonyl-containing organometallic cobalt precurso μ-η-(Bu-acetylene) dicobalthexacarbonyl (CCTBA). This sensor was based on direct absorption by CCTBA vapor in the C≡O stretching spectral region and utilized a stable, broadband IR filament source, an optical chopper to modulate the source, a bandpass filter for wavelength isolation, and an InSb detector. The optical system was calibrated by selecting a calibration factor to convert CCTBA absorbance to a partial pressure that, when used to calculate CCTBA flow rate and CCTBA mass removed from the ampoule, resulted in an optically determined mass that was nominally equal to a gravimetrically-determined mass.
View Article and Find Full Text PDF