Proc Natl Acad Sci U S A
February 1989
The sensory dark current of vertebrate retinal rods is believed to be controlled by light activation of a chain of coupled biochemical cycles that finally regulate the cationic conductance of the plasma membrane by hydrolytically reducing the level of cGMP in rod outer segment cytoplasm. The scheme has been tested by measuring heat production by live frog retinas when stimulated with sequences of light flashes of progressively increasing energy. Using pyroelectric poly(vinylidene 1,1-difluoride) detectors that simultaneously measure transretinal voltage and retinal temperature change, four heat effects assignable to known biochemical cycles in rods have been found.
View Article and Find Full Text PDFPhotons absorbed in vertebrate rods and cones probably cause electrochemical changes at the photoreceptor plasma membrane by changing the cytoplasmic concentration of a diffusible transmitter substance, reducing the Na+ current flowing into the outer segment of the cell in the dark, to produce the observed membrane hyperpolarization that is the initial excitatory response. Cyclic GMP has been proposed as the transmitter because a light-activated cyclic GMP phosphodiesterase (PDE) has been found in rod disk membranes and because intracellularly injected cyclic GMP reduces rod membrane potentials. Free Ca2+ has also been proposed because increasing external [Ca2+] quickly and reversibly reduces the dark current and divalent cationophores increase the Ca2+ sensitivity.
View Article and Find Full Text PDF