Publications by authors named "W A Edelstein"

The Soil Moisture Active-Passive (SMAP) L-band microwave radiometer is a conical scanning instrument designed to measure soil moisture with 4% volumetric accuracy at 40-km spatial resolution. SMAP is NASA's first Earth Systematic Mission developed in response to its first Earth science decadal survey. Here, the design is reviewed and the results of its first year on orbit are presented.

View Article and Find Full Text PDF

Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists.

View Article and Find Full Text PDF

Purpose: To determine the minimal image quality needed to preserve diagnostic performance relative to arthroscopy in the knee.

Materials And Methods: Synthetic noise was added to images from clinical MRI scans (three-dimensional SPACE pulse sequence; Siemens) from five patients who had undergone knee MRI with arthroscopic follow-up, resulting in 25 simulated sets of images with standardized signal-to-noise ratios (SNRs) of 1, 2, 5, 10, or 20. All cases were scored by four musculoskeletal radiologists progressing from low to high SNR and grading all cartilage surfaces, major ligaments and menisci on a 5-point scale.

View Article and Find Full Text PDF

Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI.

Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz.

View Article and Find Full Text PDF