Rhamnose is an essential component of the plant cell wall and is synthesized from uridine diphosphate (UDP)-glucose by the RHAMNOSE1 (RHM1) enzyme. RHM1 localizes to biomolecular condensates in plants, but their identity, formation, and function remain elusive. Combining live imaging, genetics, and biochemical approaches in Arabidopsis and heterologous systems, we show that RHM1 alone is sufficient to form enzymatically active condensates, which we name rhamnosomes.
View Article and Find Full Text PDFToxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences.
View Article and Find Full Text PDFTrends Plant Sci
December 2022
Indigenous crops, commonly known as orphan, forgotten, or neglected crops, are understudied, but have important roles in the diet and economy of the communities that cultivate them. Here, we review potential benefits of Indigenous crop research and highlight the importance of an anticolonial framework to prevent exploitation of these unique resources.
View Article and Find Full Text PDFTo understand and engineer plant metabolism, we need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we generated genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants (https://plantcyc.org).
View Article and Find Full Text PDF