The high-contrast-grating waveplates utilizing high contrast between silicon and air refractive indexes were developed in order to perform as a quarter wave and a half wave plate in the selected THz frequency range. The waveplates possessed anti-reflective properties due to the specific inclination of the walls both in parallel and in perpendicular direction to grating axis, efficiently suppressing the reflection losses caused by air-dielectric interface for both transverse magnetic and transverse electric polarizations. Moreover, significant reduction of the transmittance gap was achieved between both polarizations while mitigating overall Fabry-Perot effect.
View Article and Find Full Text PDFThe -type GaN epilayers with low electron density were developed on a native substrate using the metalorganic vapour phase epitaxy method and investigated under pulsed electric fields until material breakdown and optically in the spectrum range from 0.1 THz to 60 THz at two temperatures of 77 K and 300 K. The epilayers demonstrated the low-field electron mobility and density values reaching up to 1021 cm/V·s and 1.
View Article and Find Full Text PDFDispersion characteristics of hybrid surface plasmon-phonon-polaritons (SPPhPs) on the air/polar semiconductor interface were investigated by means of shallow surface relief grating using emission spectroscopy methods. A set of grating structures with optimal 1 µm depth and periods from 8 to 22 µm was developed on a heavily-doped GaN crystal. The SPPhPs were excited by thermal heating or electrical biasing of the samples which radiated directive polarized features in an extremely narrowband spectrum range.
View Article and Find Full Text PDFThe modified rigorous coupled-wave analysis technique is developed to describe the optical characteristics of the plasmonic structures with the grating-gated delta-thin conductive channel in the far- and near-field zones of electromagnetic waves. The technique was applied for analysis of the resonant properties of AlGaN/GaN heterostructures combined with a deeply subwavelength metallic grating, which facilitates the excitation of the two-dimensional plasmons in the terahertz (THz) frequency range. The convergence of the calculations at the frequencies near the plasmon resonances is discussed.
View Article and Find Full Text PDFThe development of diffractive lenses for the upper terahertz (THz) frequency range above 1 THz was successfully demonstrated by employing a direct laser ablation (DLA) technology. Two types of samples such as the Soret zone plate lens and the multi-level phase-correcting Fresnel lens were fabricated of a metal foil and crystalline silicon, respectively. The focusing performance along the optical axis of a 4.
View Article and Find Full Text PDFIn organic solar cells, free charge carriers are generated at the interface between an electron-donating and an electron-accepting material. The detailed mechanisms of the generation of free charge carriers are still under discussion. In this work, we investigate the influence of temperature on the generation efficiency of free charge carriers in blends of dicyanovinyl substituted oligothiophene (DCVnT) molecules and C60 by quasi-steady-state photoinduced absorption (PIA) measurements.
View Article and Find Full Text PDF