Publications by authors named "Vykintas Samaitis"

Ice detection poses significant challenges in sectors such as renewable energy and aviation due to its adverse effects on aircraft performance and wind energy production. Ice buildup alters the surface characteristics of aircraft wings or wind turbine blades, inducing airflow separation and diminishing the aerodynamic properties of these structures. While various approaches have been proposed to address icing effects, including chemical solutions, pneumatic systems, and heating systems, these solutions are often costly and limited in scope.

View Article and Find Full Text PDF

Multilayer printed circuit boards (PCBs) can be produced not only in the traditional way but also additively. Both traditional and additive manufacturing can lead to invisible defects in the internal structure of the electronic component, eventually leading to the spontaneous failure of the device. No matter what kind of technology is used for the production of PCBs, when they are used in important structures, quality control is important to ensure the reliability of the component.

View Article and Find Full Text PDF

In guided-wave-based damage-imaging algorithms, damage reconstruction typically involves comparing the signals with and without a defect. However, in many cases, defect-free data may not be available. Therefore, in this study, baseline and baseline-free approaches were used for damage imaging, exploiting not only the amplitude of the signal as the feature but also five additional features, namely, the amplitude of the sparse signal after deconvolution, the amplitude of the coefficients at the excitation frequency from the re-assigned short-time Fourier transform, the time of flight determined from cross-correlation, kurtosis in the time domain, and kurtosis in the frequency domain.

View Article and Find Full Text PDF

This research utilizes Ultrasonic Guided Waves (UGW) to inspect corrosion-type defects in steel pipe walls, providing a solution for hard-to-reach areas typically inaccessible by traditional non-destructive testing (NDT) methods. Fundamental helical UGW modes are used, allowing the detection of defects anywhere on the pipe's circumference using a limited number of transducers and measurements on the upper side of the pipe. Finite element (FE) modeling and experiments investigated generating and receiving UGW helical waves and their propagation through varying corrosion-type defects.

View Article and Find Full Text PDF

Pipeline structures are susceptible to corrosion, leading to significant safety, environmental, and economic implications. Existing long range guided wave inspection systems often fail to detect footprints of the concentrated defects, which can lead to leakage. One way to tackle this issue is the utilization of circumferential guided waves that inspect the pipe's cross section.

View Article and Find Full Text PDF

The article is devoted to the investigation of ultrasonic inspection techniques suitable for detecting hydrogen-induced cracking (HIC) and a high-temperature hydrogen attack (HTHA), which are of great importance in petrochemical and refinery industries. Four techniques were investigated: total focusing method (TFM), advanced velocity ratio (AVR) measurement, advanced ultrasonic backscatter technique (AUBT) and time of flight diffraction method using ultra low angle ultrasonic transducers (TULA). The experimental investigation has been carried out on two carbon steel samples cut off from a heat exchanger of an oil refinery and potentially affected by HIC.

View Article and Find Full Text PDF

Fibre-reinforced composite laminates are frequently used in various engineering structures, due to their increased weight-to-stiffness ratio, which allows to fulfil certain regulations of CO emissions. Limited inter-laminar strength makes composites prone to formation of various defects, which leads to progressive degradation of residual strength and fatigue life of the structure. Using ultrasonic guided waves is a common technique for assessing the structural integrity of composite laminates.

View Article and Find Full Text PDF

Industrial inspection protocols are qualified using mock-ups manufactured according to the same procedure as the plant part. For coarse-grained castings, known for their low inspectability, relying on mock-ups becomes particularly challenging owing to the variability of grain properties among components. Consequently, there is a keen interest in the capability to verify whether the grain size of the component under test matches the qualification specification in-situ.

View Article and Find Full Text PDF

According to the statistics, 40% of unplanned disruptions in electricity distribution grids are caused by failure of equipment in high voltage (HV) transformer substations. These damages in most cases are caused by partial discharge (PD) phenomenon which progressively leads to false operation of equipment. The detection and localization of PD at early stage can significantly reduce repair and maintenance expenses of HV assets.

View Article and Find Full Text PDF

BACKGROUND The aim of this study was to evaluate the ability of different rotary glide path techniques to maintain canal anatomy by comparing canal transportation and centring abilities in curved root canals using X-ray micro-computed tomography (micro-CT). MATERIAL AND METHODS We selected 36 root canals and randomly assigned them to 3 groups. The first group was instrumented using Pathfile (PF) 1 and PF2, the second group using PF2, and the third group using a Proglider (PG) instrument.

View Article and Find Full Text PDF

Ultrasonic inspection is widely used for non-destructive evaluation of composite adhesive joints. However, there are serious challenges in applying ultrasonic testing on metal to composite hybrid joints, because they are multi-layered, made out of dissimilar materials and relatively thin. The ultrasonic signals reflected by different layers are overlapped, scattered and attenuated.

View Article and Find Full Text PDF

In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications.

View Article and Find Full Text PDF

This work proposes a novel hybrid signal processing technique to extract information on disbond-type defects from a single B-scan in the process of non-destructive testing (NDT) of glass fiber reinforced plastic (GFRP) material using ultrasonic guided waves (GW). The selected GFRP sample has been a segment of wind turbine blade, which possessed an aerodynamic shape. Two disbond type defects having diameters of 15 mm and 25 mm were artificially constructed on its trailing edge.

View Article and Find Full Text PDF

Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes.

View Article and Find Full Text PDF

Multi-wire ropes are widely used as load-carrying constructional elements in bridges, cranes, elevators, . Structural integrity of such ropes can be inspected by using non-destructive ultrasonic techniques. The objective of this work was to investigate propagation of ultrasonic guided waves (UGW) along composite multi-wire ropes in the cases of various types of acoustic contacts between neighboring wires and the plastic core.

View Article and Find Full Text PDF